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ON CONTACT PROBLEMS FOR WEDGE-SHAPED PLATES* 

V.M. ALEKSANDROV and D.A. POZHARSKII 

Problems concerning the pressing of a thin linear inclusion in the form 
of a stiffness rib into a plate having a wedge-shape in planform are 
studied. The plate edges are either rigidly clamped or simply 
supported. The integral equations (IE) of these problems have a kernel 
symbol of the type tanh or coth, where their solution is sought in the 
class of functions with non-integrable singularities /l/. New simple 
special approximations are proposed for the kernel symbols that will 
enable the problem IE to be reduced to IE in two regions solvable in 
closed form. Analogous approximations of the tanh or coth of the 
kernel symbols of IE whose solutions have integrable singularities were 
examined in /2/, for example. Here IE in two regions also occurred. 
Since the approximations of the tanh or coth do not always enable a 
solution to be obtained with satisfactory accuracy, a complicated 
approximation of the kernel symbol with an arbitrary given error is 
introduced. The IE solution is also constructed in closed form for 
such an approximation. Examples are presented when an exact solution 
of the problem is obtained successfully. The results may be useful in 
the analysis of structural elements in construction. 

1. Let a rigid stiff inclusion of magnitude f (d (see the figure) be impressed by 
a force P into a Kirchhoff-Love plate of wedge-shaped planform with apex angle a along the 
segment e< r< b of the ray 'p = i3. It is assumed that the plate edge is a) rigidly clamped; 
b) simply supported; c) the edge cp = 0 is simply supported, the edge cp = a is rigidly 
clamped. It is required to determine the contact forces ~@),a < r< b equal to the jump of 
the generalized transverse forces on the inclusion, and also to find the magnitude of the 
force P and moment M applied to the inclusion for a given f(r). A method of obtaining Green's 
function for wedge-shaped plates with the boundary conditions under consideration here is 
indicated in /3/, based on application of the Mellin integral transform. After having found 
Green's functions of three boundary-value problems and having introduced dimensionless 
quantities by means of the formulas 

(r/b)R = r*, (p/b)R = p*, k = (alb)H (1.i) 

‘p (r) r2 = RDr*‘rp* (r*), 4f (r) r-l = R’f* (r*) r*-l 

P 

(D is the plate stiffness and R is a positive constant), the 
IE can be written in the form (we later omit the asterisks 
y=a-fl,s=a+B): 

a) B = 0, L(U) = 2 ((Uchyusiny-shyucosylIU2chyuxsinasinB+ 
u (sh yu sin 6 - sh 6u sin y)/2 - sh au sh pu cosyl - (1 + u2)x 
gh YU sin y [U sh yu sin czsinp -shaush fiu siny)}~(sh~au - uasin*a)-1 
b) B = lim UL (u), u -+ 0 for a = n; a = 2n and p # n; in the remaining 

cases B = 0; 
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L(u)=2(u.(chaush~ushyusinacas~eos~-chtCtlch~~chyzlsina. 
sinBsiny-shauchBushyueosasinBcosy-shuushf)uchyucoaa. 
cos @ siny) -j- sh ccush ~ushyucostLCOS~cosy-_ha~ch~uch~~cos~. 
sinBsiny-tchauchBushYLLsinasinBcosy+chaushBuchy~sina. 
cos p sin y) (ch* au - COSTS)-’ 

cl 3 = 0, L(u) = 2 (shyn (ah 6~ siny -sh yusin 6)(ch2ausin y + 
sin 6) + sh 2au sh yu COST (ch 6~ COSY -oh yu cos 6)-!- u [(sh&siny - 
sh ys sin 6)&h 2au sh ytl cos y - ch yu sin 2a sin 7) - (ch 6% cos y - 
ch yu eos 6) fsh 2au ch yu sin y + shyusin2acos y)] +-a*[(~% 6% coa y - 
ch ye cos 6)ch yusin2asiny- (sh6 usiny- shyu sin@ (shyucos2a + 
sh 6~) sin y]} x [(ch 2uu - 00s 2a)(sh 2au - u sin 2a)]-' 

Note that the function L (u) is a function of the type tanh u for B = 0 or coth u 
when B# 0 in its asymptotic properties as U-+O,U-tW and is the residue of the func- 
tion L(u) at zero. For L(U) of the coth u type, the integral in the kernel K (b) is 
understood in the sense of the theory of generalized functions exactly, say,as the integral 
in the kernel of the IE of a plane contact problem for an elastic wedge with a hinge-supported 
lower face /2/. It follows /l/ from the asymptotic behaviour of L(u) as U-+cc that the 
solution of the IE (1.2) must be sought in the class of functions with non-integrable singu- 
larities of order ---yf2 at the point p=k, 1. 

2. We introduce the following approximations for L(u), O<u<ca of the tanh ti and 
coth ti types, respectively (R = ~/(2~)): 

Using the 

Inserting (2.1) and (2.2) into the IE (1.2), we will have two IE for the cases of kernel 
symbols of the type tanh u and coth u (k B r < 1) 

L (11) tll Au 
-=u’rR” 1 + lb= 

-$-=limA$iL 
u+.a 

L(u) cth Au 1 

l+u’ “--, AR’= up + R” B 

known intregrals /4f, it can be found that 

'~(<~~$~ du = --r {lncth$- + chRtln(2sh Rt)--RT sh Rt] 

(2.1) 

(2.2) 

1 

s i q(p) -@$lnJp_rI+ (PirJP 
x 

Tin(P+r)-rralnr--Pp2inP)dP =xf(r) 

1 
9+!.? lnlp_rl_ (P+r)* 2 In CP -I- r) + 27~ In p} dp = nf (r) 

The solution of the IE (2.3) should obviously be sought as an even solution of the cor- 
responding IE in two regions while the solution of the IE (2.41 should be sought as odd. We 
will make a regularizing substitution of the desired functions in (2.3) and (2.4), respect- 
ively, by the formulas (g(r) = f(l -p)(r*-p)): 

cp (P) = 'p+ (P) + (o+P + B+PY) g-a (P) (2.5) 

cp (P) = 'p-(P) -I- (% + LP') C(P) (2.6) 

where a& and & are selected in such a manner that q*(p) have integrable singularities at 
the points p = k,1. We substitute (2.5) into (2.3), differentiate the equation obtained 
three times with respect to T 
obtain the known singular IE 

assuming that f(r)E H$(k, i), O<o< 1 and, dividing by P, 
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1 

s f”(r) 2p+ cp+(P)*=-y-- r= 6 < ?- Q I), 
k 

p, = f ‘p+ (P) dp 
k 

in two regions. Its solution has the form 

‘p+ (P) = &{P+++&pdr} 
k 

(2.7) 

(2.8) 

It is taken into account in (2.8) that /4/ 

Similarly, substituting (2.6) into (2.4) and differentiating thrice with respect to r, 
we find 

1 1 

'p-(P) = L&{M_ + 1 g(r)fW @jr .dr} t r"-p' M_ = 1 p(p- (P) dp (2.9) 
k Ir 

Three unknown constants a*,&, P+,M_ are present in (2.5), (2.8) and (2.6), (2.9). 
To obtain a system of three algebraic equations in a+, p+, P, we operate on the IE (2.3) in 
which the function 'p (P) is replaced by (2.5) and (2.8), with the operators 

1 
rdr rdr r%r 
-9 s g(r) k 

-sV-j gS(r) gs (r) 
k 

After taking quadratures we will have the system of equations 

where the following notation has been introduced: 

(2.10) 

(2.11) 

b, = 

d,=~_~_--~-, d, - ' i k2 I+@ 
2(1-P)* ’ d,=$ln&--- 2 (1 - k')* 
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and K = K (k), K' = K' (k), E = E (k) and E' = E’(k) and complete elliptic integrals. The 
integrals with non-integrable singularities of order -y/z in (2.10) and (2.11) are under- 
stood in the finite-part sense /5/. The values of the integrals a,, b,, c, (n = 0, 1, 2) can 
be calculated as a function of k by using a computer. 

Similarly, after acting on the IE (2.4) with the operators 

k k k 

and taking (2.6) and (2.9) into account, we obtain a system of three linear equation in a-, 
B_, M- 

After determining a?. pk7 p+, M_ from (2.10) and (2.12), the closed solution of the IE 
(2.3) and (2.4) are found from (2.5), (2.8) and (2.6), (2.9). 

We will present some examples of specific approximations of the form (2.1). In the case 
of problem a), for a= Zfl= n, A = 1.321 the error of the approximation is x = 10% while in 
the case of the problem b) for (1= 2g = n/2, A = 1.121 the error is x= 5%. For case b) for 
a= 28 = n L(u) = cth nui2,A = n/2 the problem has indeed as exact solution that remains valid 
with a certain error even in a small neighbourhood of the value of the angle fi= n/2. 

3. Approximations of the form (2.1) have satisfactory errors but not for all values 
of the angles a, fi (O,< cc< Zn,O< fi <a). A more complex approximation has been proposed* 
of the form 

(3.1) 

for the case of the IE kernel symbol of the type tanh u. The constants 
t NJ 

yo, 6,, yn (n = 1, . . 
are chosen from the condition for best approximation of the form (3.1) along the real 

axis. By increasing N any accuracy of the approximation can be achieved. 
In the case of the approximation (3.1) we introduce instead of (1.1) non-dimensional 

quantities according to the formulas 

I = hln (r/a) - 1, E = hln (p/a) - 1, h = 2 [In (b/u)]-’ 

4hXf (r)/r = G (z), 'P (r) reD-' = I# (I) 
(3.2) 

Then the IE of the problem takes the form 

We make the change of variable u = Au' and introduce the notation 
Yo = hy,' in the integral in expression (1.2) for K(t). 

6, = M,', Yn = hm', 
After this the IE (3.3) can be 

rewrittentaking (3.1) into account as (the primes are omitted) 

*Zelentsov V-B., Asymptotic Methods of Solving Mixed Problems of the Theory of Thin Plate 
Bending. Candidate Dissertation, Rostov Univ., Rostov on/Don 1984. 
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(3.4) 

(3.5) 

We apply the method developed in /6/ to solve the IE (3.4) with kernel (3.5). For 
simplicity we assume that G(x) is an even function and G(x) = chex, E is a complex constant. 
We represent the IE (3.4) and (3.5) in the form of an ordinary differential equation 

P,(L)fl(z) = 2nP,(--c2) eh EZ, /x I< 1 (3.6) 

Inverting (3.6) and using (3.71, we obtain an equation to determine q(x) 

p* (u”) = (u” f vo”) n (uZ + L”) 

-1 --cc 

(3.8) 

Here G,, are unknown constants. 
Since the solution of the IE (3.4) is sought in the class of functions with non-ihte- 

grable singularities of order --Vat we regularize the outer integral in (3.8) by introducing 
the function 

$* (2) = 4 (X) - C (ch 6 - ch &)-'A, 6 = n/Al (3.9) 

where g* (x) belongs to the class of functions with integrable singularities of order -'!, 
at the points /x f = 1. Taking account of the results in /6/, we obtain for the Fourier 
transform y (B) of the function q(x) (understanding the corresponding integral in the 
finite-part sense) 

(3.10) 

The functions 'b+@),R(u,V) are given by (2.6) from /6/. The solution itself has the 
form 

(3.11) 

where 'p+ (2) is given by (2.9) in /6/. The constants C,, C,, . . ..GN in (3.11) are found 
from the linear algebraic system 

m=O,t,...,N 

Q-~,*Q~l,*+~~,e 

Qh,Q-v,+u,,,,e 

(3.12) 

where the quantities r,, emnr fm (n 2 1) are the same as in (2.8) from /6/. After deter- 
mining C,, C,, . . . . CN from (3.12), the solution of the IE (3.4) is given by (3.11) in the 
even case. The solution of the IE (3.4) in the odd case Can be constructed similarly when 
G (z) = sh EZ. Combining the even and odd solutions, the solution of the IE (3.4) can be 
written down in the case when the function G(x) Can be represented by a Fourier series. 
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The exact solution can be found by using the method elucidated above for problems a, b, c 
for a- = 2$ =2n, L(u) = thnlr. 

4. We present a numerical example of the solution of a contact problem. We consider 
a plate in the form of a half-plane, simply supported along the boundary a = 2% = s, L(u)= 
cth nd2,~ = 2/n (problem b) . 

As already noted, the problem is solved in closed form in this case. 
By (1.1) let the dimensionless function f(r)zf; k= 0.1. Then UQ = -2.402: a1 = -0.9227; a, = 

0.6%7l;b, = -97.15; bX = 1.734; bs = -0.9762; co = 12.98: ct = --1.298 and ep = --1.172. Solving the system of 
linear Eqs.12.12) for this case, we find that a_ = --1.586, B_ = -93.01, M_ = 29.50. By using (2.6) 
and (2.9) we write down the distribution function of the desired contact forces in the form 

cp (p) = -(1.692 + 74.04~~ + 18.78~') g-8 (p) (4.1) 

It follows from expression (4.1) that the function e(p) retains its sign in the 
interval O,l<p<i, which indicates the impossibility of separating the inclusion from the 
plate, Integrating (4.1) with respect to p between 0.1 and 1, we evaluate the dimensionless 
fOrCe p* = PbfD. In the case under consideration here P*= 62.24. The guantity M_= M/p has 
the meaning of a dimensionless moment applied to the inclusion. 
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